:: алгоритмы  и методы :: :: олимпиадные задачи :: :: связь :: :: о сайте ::
Путь: Математика » Графы и маршруты » Алгоритмы нахождения максимального потока » Список рекомендованной литературы
  Список рекомендованной литературы



Библиография

Библиография.

 

[1]. Липский В. Комбинаторика для программистов: Пер. с польск - М.: Мир, 1988. - 213с. ил.

[2]. Goldberg A. V. Combinatorial Optimization Lecture Notes for CS363/OR349.

[3]. Форд Л. Р., Фалкерсон Д. Р. Потоки в сетях. - М.: Мир, 1966.

[4]. Wilf B. S. Algorithms and Complexity. Internet edition, summer 1994. http://www/cis.upenn.edu/wilf.

[5]. Edmunds. K., Karp R.M. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM, 1972, 19, s. 248-264.

[6]. Cormen T.H., Leiserson C.E., Rivest R.L. Introduction to algorithms. 1990.

[7]. Адельсон-Вельский. Потоковые алгоритмы.

[8]. Z.Galil, A. Naamad. Network flow and generalized path compression. 1979.

[9]. Sleator D. D., Tarjan R. E. A Data Structure for Dynamic Trees. J. Comput. System Sci.,26:362-391, 1983.

[10]. Goldberg A. V., Tarjan R. E. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921-940, 1988.

[11]. Goldberg A. V., Rao S. Length functions for flow computations. Technical report #97-055, NEC Research Institute, 1997.

[12]. Fong C. O, Rao M. R. Accelerated labeling algorithms for the maximal flow problem with applications to transportation and assignment problems Working Paper No. 7222, Graduate School of Management, U. of Rochester, Rochester, N Y , 1972.

[13]. Lin P. M., Leon B. J. Improving the efficiency of labeling algorithms for maximum flow In networks Proc IEEE Int Syrup on Circuits and Systems, 1974, pp 162-166.

[14]. Srinivasan V.,  Thompson G.L. Accelerated algorithms for labeling and relabeling trees, with applications to distribution problems. J. ACM 19, 4 (Oct. 1972), 712-726.

[15]. Johnson E L. Networks and basic solutions. Oper. Res. 14 (1966), 619-623.

[16]. Cheriyan J., Mehlhorn K. An Analysis of the Highest-Level Selection Rule in the Preflow-Push Max-Flow Algorithm.