Дана последовательность целых чи-
сел x[1],..., x[n]. Найти максимальную длину ее возрастающей
подпоследовательности (число действий порядка n*log(n))
Решение. Искомая функция не индуктивна, но имеет следующее
индуктивное расширение: в него входит помимо максимальной длины
возрастающей подпоследовательности (обозначим ее k) также и чис-
ла u[1],...,u[k], где u[i] = (минимальный из последних членов
возрастающих подпоследовательностей длины i). Очевидно, u[1] <=
... <= u[k]. При добавлении нового члена x значения u и k кор-
ректируются.
n1 := 1; k := 1; u[1] := x[1];
{инвариант: k и u соответствуют данному выше описанию}
while n1 <> n do begin
| n1 := n1 + 1;
| ...
| {i - наибольшее из тех чисел отрезка 1..k, для кото-
| рых u[i] < x[n1]; если таких нет, то i=0 }
| if i = k then begin
| | k := k + 1;
| | u[k+1] := x[n1];
| end else begin {i < k, u[i] < x[n1] <= u[i+1] }
| | u[i+1] := x[n1];
| end;
end;
Фрагмент ... использует идею двоичного поиска; в инвариан-
те условно полагаем u[0] равным минус бесконечности, а u[k+1]
- плюс бесконечности; наша цель: u[i] < x[n1] <= u[i+1].
i:=0; j:=k+1;
{u[i] < x[n1] <= u[j], j > i}
while (j - i) <> 1 do begin
| s := i + (j-i) div 2; {i < s < j}
| if u[s] >= x[n1] then begin
| | j := s;
| end else begin {u[s] < x[n1]}
| | i := s;
| end;
end;
{u[i] < x[n1] <= u[j], j-i = 1}
Замечание. Более простое (но не минимальное) индуктивное
расширение получится, если для каждого i хранить максимальную
длину возрастающей подпоследовательности, оканчивающейся на
x[i]. Это расширение приводит к алгоритму с числом действий по-
рядка n*n.
|